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ABSTRACT
Let u(p, k) denote the class of areally mean p-valent functions attaining
maximal growth on k rays. The aim of this article is to get the sufficient

and necessary condition for which Bazilevic’s theorem holds for f € u(p. k).

1. Introduction

Let 1(p) denote the class of functions f which are areally mean p-valent in the
unit disk D = {z: |z] < 1}. For integer k, we say f is in u(p, k) (see [5, p. 148])
if f € p(p) and we can find constants ¢ > 0, § > 0 and a sequence {r,} with

r, — 17 as n — oo such that

(1.1) frae® N > e(1 - 7,)" /%, s=1,2,....k,
and
(1.2) §<109) -0 <2r~6, 1<j<s<k,

for all n. By taking subsequences we may assume €%’ — €% asn — 00, § =
1,2,...,k. For f € u(p, k) we say that f attains maximal growth on the k rays
e, s =1,2,...,k.

Let M(r) = max,|=. | f(2)]. If f € p(p) and if lim, ;- (1 —7)*M(r) = a > 0,
then f € u(p, 1).
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Let z1,..., 24 be the zeros of f(z) in D. For an appropriate constant ¢ # 0 put
hizy=c¢c H 1(z = zj) so that
(1.3) log h = 2102:@,~

is regular in D. The following theorem due to Aharonov [1] is a generalization

of Bazilevic’s Theorem [2].
THEOREM A: Suppose that f € u(p,1) and attains maximal growth on e'% and
that

(1.4) [F(z)]| >A>0, 0<ryo<|s|<1,

for some constants A and rq. Then

(1.5) Y nfen ~ —em%|" < +oo,
= n

where {c,} are given by (1.3).

Since Bazilevic’s Theorem is important, it is natural to ask what is the sufficient
and necessary condition for which (1.5) holds. In the present paper we shall solve
this problem. Moreover, we answer this question for the class u(p, k).

2. Another definition of the class u(p, k)

Let the simply connected regions Dy, ..., D, be disjoint and contained in D, and
furthermore satisfy (i) ¢ € 8D, s = 1,2,...,k, (i) DyU D U---U D, =D
(iii) for each j, the function

W

t{2) = kl
(~) - 5 8 (1 — :e—i91)2/k‘ e (1 _ :e—in)‘Z/k

maps D; one to one conformally onto the strips §; = {t: b; < Imt < b; + 7},
where b; is real. The possibility follows from the argument in [7, p. 44]. The
inverse mapping z = ¢;(t) maps S; onto D;.

Consider the function g;(t) = f(p;(t)), t € Sj. Let nj(w) = n(g; = w, S;)
be the number of roots in S; of the equation g;(t) = w. Let

1 27 s
Pi(R) = o~ /0 n;(Re')do.
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It is clear that n;(w) = n{f = w, D;) and
k& 1 2 .
S PR P(R) = P(RD.f)= o [ nlf = Re”, D)ab.
i=1 0

Set

w(R)={t: ;)| =R, teS;}, €7(R)=inf{Ret:t€;(R)},
$)(R) = sup{Ret: t € 1(R)}, wj(R) = €Y (R) - €7 (R).

Lemma 3 in [5, p. 153] then gives

i [f(re*s)] dR 1
. - =] -,
(2.1) 2/Ro RE,(R) Ogl—r+0(1)’ r—1

So it is easy to see that g;(t) satisfies the hypotheses of Lemma 1 in [4]. By (4.2)
in [4, p. 105] we have

RJ
(22 ) (R) - (R 2 5 [ s,
Ry J

for some positive Ry and all R; > Ry. We put R; = |f(rei®)|. Since |g;(t(re®7))|
= R, t(re'%) € v;(R;), thus

(2.3) 7 (R;) < log{r*/2 T] 11 — re’®—0)|1} < €9 (Ry).
j=1

Now theorem 2 in [4, p. 108] shows that

) 1 B 1
2.4 ED(R; ——/ dt—f8, r—o1", s=1,2
24 )3 Ju, B0

where —00 < 3 < 4+00. From (2.1), (2.3) and (2.4) we obtain the following
Lemma.

LEMMA 2.1: If f € p(p, k), then limp_ 4o wj(R) =0, =1,2,...,k.

THEOREM 2.1: If f € u(p, k), then there exists a positive constant A independent
of r such that

(- [T 1 | i 1f(re®)HED <A< +oo, 0<r <L,
i=1



330 X.H. DONG Isr. J. Math.

Proof: Set R; = |f(re'i)|, M* = minj<;j<x R;. Then (2.2) and (2.3) give

k
log{ré H Ieies _ rei9j|—1} > f;j)(Rj)
s=1

(2:9) = &7 (R;) - w;(Ry)
R;
>R+ [~ (R

We sum (2.5) from j = 1 to k to find

log{ H e — re*®s| 72} + log(1 —r)~*
1<v<s<k

>Z[£ (Ro) - w;(Ry)] + z/R

P;(t

. \)
M =
I

e[ [
e oy
j=1
u 2 M R.
Z;[&J (Ro) iRl + 5 /Ro tP(t) 2;/1\4 tP(t)

[
NgES

) o Rk M a1 R at
(6777 (Ro) — wji(Ry)] + D) /Ro tP(t)+§jz=:1/Ro W’

where we have used the inequality between arithmetric and harmonic means.

[
I
—

From Lemma 2.1 in [6, p. 23], we have

R
dt 1 R 1
2.7 - l —.
( ) /Ro tP( ) € Ro RO 2p
Combining this with (2.6), we obtain

log(1 —)7% 4 log{ H e — retfe|~2}
1<v<s<k
(2.8)

where . \
C(Ro,r) Z[ﬁ(]) Ry) — ]+,C (Iog—Rl———%).
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Since Rp is fixed, we see from Lemma 2.1 that C(Rp, ) is bounded as r tends to
1. The conclusion of Theorem 2.1 now follows from (2.8). This proof is complete.

THEOREM 2.2: Suppose that f(z) is areally mean p-valent in D. Then f €

u(p, k) if and only if there exist k distinct points €% ,... e on |z| = 1, and
there exist a constant § > 0 and a sequence {r,} withr, — 1~ as n — oo such

that

(2.9) |f(rae®)] > 6(1 —r,) /% j=1,2,...,k,
and

(210) M(ra) < 3= 1) 0%,

for all n.

Proof:  We only need to prove the necessity. From [5, p. 153], f € u(p, k) implies,
in the notation of [4, p. 119] , that f € F(k). Thus we have [4, p. 128]

(2.11) sup{|f(z)|: z € Dj,|z| =7} < 2| f(ref%)| < 2M(r) < 41ré1ax |f(re%)],

for all r sufﬁciently near 1. Taking {r,} and {9,(1’ )} satisfying (1.1) and (1.2), we
have r,e* e Dj, for all large n. Thus

2|f (e’ )| > sup{lf(z I z € Dj, |2 = n}

(212) > | f(rne'? 7 )] >ce(l—rp)” 2p/k

We deduce from (2.11) and (2.12) that
. 2pk : lc k—1) > _ 2p/k
(L= )% i, ()10 T 700,60 > M )1 72

j=1

for all large n, where ¢ is a positive constant. Theorem 2.1 shows that the left-
hand side is bounded by a constant independent of n, hence (2.10) holds. This
completes the proof of Theorem 2.2.
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3. On Bazilevic’s Theorem

In this section, we shall denote by ¢y, ¢, ... any constants independent of r.

LEMMA 3.1: Suppose that f € pu(p, k) and that z1, ...,z are the zeros of f in
D. Then we have for 8 € [0, 2~],

| (rae®) (1 = 72)% < !PT |f(re) (1~ 1),

(3.1) :
5(1 + ll’éljaé(qlzj‘l) <ry<rg <l

In particular,
(3.2) M(r) < 4Pe'P+3M(r?), L1+ max |z]) < <1
SI1%9

Proof: From Lemma 2.4 in [6, p. 28], we have

1-7

<2log1

/If(rze“')l dR
fmeny BP(R)|
Combining this with (2.7), we obtain

og 1 (2e)| )I
1 Frae®)]

This shows (3.1) is true and (3.2) follows easily by taking r1 = r2 = r2 in (3.1).

1 .
2(1-1- 121?§q|27|) <ri<rg<l.

+10p+1

<2p log1

LEMMA 3.2: Suppose that f € u(p, k) and that z1,...,zq are the zeros of f in
D. Then, if r, is defined in Theorem 2.2, we have

/M(Tn) H(R,ro < |2| < /Tn) dR =0(1)

3
Ro R

asn — 0o,

where 7o = (3 + maxi<;<q |7;]), Ro is a fixed positive constant, and

H(R,Toglz{<\/ﬁ)=%//l‘<Rn(f=w,r0§|z|<\/ﬁ)dudv—pR2,

w=u+ vi.

Proof: Choose a fixed to € (ro,1), let 72 € (to,1) and put & = tee'%, f;(£)
= f(& + 6€), £ € D, where § = 3(r +1?) — to. Then if #; is chosen near enough

to 1, we see that

k 27 .
SRR < PR <l <r)= o [ nlf =Re% o < |2l < ).
0

i=1
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where )
1 [ .
P(R) = — / n(f; = Re'®, D)do.
27 Jo
Applying Theorem 2.2 in [6, p. 21] to f;(£), we obtain
0N R 1
ey BB RP;(®) =281

Set r* = r,,, My = maxi<;<x | f(§)] and M* = mini<;<x |f(r?e)]; it follows
from the inequality between arithmetic and harmonic means that

M* M* k
/ dR < / % Z 1 IR
Mo RP(R, o < IZ' < 7”) M, k= 4 R.P](R)

1 k [f(r2e')| dR 9 1 c
< — < Zlog—— +Cs.
= 22;/5” RP(R) "k 81_,2 778

(3.4)

From Lemma 2.1 in (6, p. 23] and Theorem 2.2, we have

M _H(R,ro < |2 < 1)
0= dR
Mo p°R
o
dR 1
(3.5) </ ~Ligmr+C

= Ju. RPRiro<lzl<r) p & *

31og1 —%logM*+C5§C’6.

The fact that n(f = w, rg < |2| < r) is non-negative gives —H (R, 7o < |z| < 1) <
pR?%. Hence, we get from Lemma 3.1 and Theorem 2.2 that

M=) _H(R, 7o < |2| < Tn)
= dR

M(r,) CSM(rn)
< plog — +pl g ——"2 < Cy.
pogR +p ogM*( ) S <Cr+p E M) =0

Lemma 3.2 follows directly from (3.5} and (3.6).

(3.6)

LEMMA 3.3: Let the function f be areally mean p-valent in D, and let ro be
defined in Lemma 3.2. Set m(r) = min, <,< | f(2)|- Then

112
5.7) 2_17F//lz|gr [bg i_%]

M(r) <
—plog M) [ B <l <)
m(r) m(r) R

dzdy

dR+ B(r), ro<r<l,
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where B(r) is a bounded function in [rg, 1)

Proof: By the residue theorem, we easily obtain

2
L‘ﬂ'//n,<|z|<r [logi(—z;]
2
/~/ro<|z|<r

ZZt
dzdy——ZZlo -—z]zt

j=1t=1

dzdy

(3.8)

where z1,..., 2, are zeros of f(z) in D. From (6) and (7) in [3] (or (6) in [1]), we

have
1 THOIN
— —2| dxd
w/ /rogmg fizy|
B /M(r) P(R,TO < |z| < T)dR_ /M(r) p+h(R)dR
i) R “Jmey R
M@Fr) 1 HR,ro < |2| <71)
=plog + = d
m(r) 2 i) R?
M) H(R,ro < |2 < 1)
+/ 2 dR.
m(r)
Set
1 @7
z
Br=—// [lo ————} dzd
(3.10) ") =5 lz|<ro ) Y
. 1 (MO HR,ro<|z|<71) 1 r—zzt
- d L= - log ——=1=
+ 2 v/-m(r) RZ 2 ;; Og - Z,Zt

j
Since f is areally mean p-valent in D,

H(Raro S 'Z' S 7‘)

P S R2

<0.

This shows that B(r) is a bounded function in [ro,1). From (3.8) to (3.10), we

obtain easily (3.7) and the proof is complete.

THEOREM 3.1: Suppose that f € u(p, k), and attains maximal growth on t; =

€% (j=1,2,...,k). Then

0o 1 k
(3.11) S mlem - m—};

m=1

2
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if and only if

Ro
(3.12) / {%// n(f=w,ro <|2| < l)dudv} dR < +o00,
o ) Jicr

where {c,} are defined in (1.3), rq is defined in Lemma 3.2 and Ry is a fixed
positive number.

It should be noted that under the hypotheses of Theorem A, we have
n(f = w,mo < |z} < 1) = 0 for |w| < A. Thus, Theorem 3.1 certainly implies
Theorem A.

Proof: From Lemma 3.3, we have

oo k
1 m
I(r) =3 mlem = =23 TP
m=1 =1
oo 1 oo 1 k 2 k oo
_ 2,..2m 2..2m 2 m
=" mlew|*r +EZE|_}:P;|T —-ZZReZcm(r t;)
m=1 m=1 j=1 j=1 m=1
B M(r) l_/MmzﬂRwogpy<ﬂdR
S 2 m(r) = 2p® Jimn R®
k 2
1 1 1 f(r tj)
=1 - — 1 +B
+ k o8 1—-72 kp ; o8 ‘ h(r2tj) 1(r)

k
= % log {(1 —r2)"2 kM (r) H lf(thj)rz/k}

=1

1 /m 1 1//
+ — —{z n(f =w,ro < |z| < r)dudv p dR
2p* Jom(ry R® {7r [w|<R °

1 M(r) H(R,mo < |z} <1)
2p® Jr, R®

dR + By(r),

where B(r), Bo(r) are bounded functions in [rg,1). Let r, be defined as in
Theorem 2.2, and set

k
S0 = 52 og{(1 = 1) /43 (vR) [T 1t

j=1

1 M(v7) g R ro <z < V/Tn
— ( °—L' )dR+Bz(rn)
2p Ry R
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Then Lemmas 3.1, 3.2 and Theorem 2.2 show that {S,} is a bounded sequence.
By Levi’s Theorem,

lim / { // n(f=w,ro <z }<r)dudv}dR
r—=17 Jm(r) lw]<R
° 11
-—-/ F// n(f = w,rg < |z| < 1)dudv 7 dR.
0 lw]<R

If we note that I(r) is nondecreasing in [rg, 1), and that

1 [f 1
I(/r0) = Sn + ——/ {———// n(f=w,ro < 5| < \/7‘n)dud'v} dR
21p% Sy | B2 Jiwisr

for all large n, then from (3.13) we can complete the proof of Theorem 3.1.

(3.13)

4, An example

We now construct a function g(z) in u(p,%) that satisfies (3.12) but does not
satisfy (1.4). Set

z 7 1+ 1+=

1 z
, Izl < L.
)1 2r 1 — 1—-2z 1=l

filz) = 5(1—_?)5+ (% -

]
T
Easy calculations show that Re{(1 — 2)%fi(z)} > 0, |z| < 1. Hence fy(z) is
univalent in D. By considering fi(e?), we see that fi(z) omits a disk
lw — wo| < € for some wy € C and € > 0. Put fo(z) = fi(2) — wo, and let
Gs be a simply connected domain such that (i) f2(D) C Gs, (ii) for all small
p>0,Gsn{lw < p} ={w=u+viiu?+v?<p%0<v<u* 0<u<p}
where § > 0. By the Riemann mapping theorem, we see that there is a function
of the form f(z) = —wp + a1z + -+, z € D, that maps D univalently onto Gs.
Since f2(z) is subordinate to f(z), the Hayman index § of f cannot be smaller
than that of fo, s0 8 > 3. Thus f € pu(1,1). Let W(R) denote the area of the
portion of G5 lying in |w| < R. From (ii), we find W(R) < R**® for all small R.
We see- that f satisfies (3.12). Obviously, f does not satisfy (1.4).

In general, for the function g(z) = f(z*)?/%, we get from Lemma 2 in
[6, p. 95] that g(z) is circumferentially mean p-valent in D. Since f € p(1,1),
g(z) € u(p, k). Clearly, g(z) satisfies (3.12) but does not satisfy (1.4).
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