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A B S T R A C T  

Let p(p, k) denote the class of areally mean p-valent functions attaining 
maximal growth on k rays. The aim of this article is to get the sufficient 
and necessary condition for which Bazilevic's theorem holds for f E ~(p, k). 

1. I n t r o d u c t i o n  

Let  p(p) denote  the  class of functions f which are areal ly  mean  p-valent  in the  

unit  disk D = {z: ]z] < 1}. For  integer k, we say f is in #(p,  k) (see [5, p. 148]) 

if f E #(p) and we can find cons tants  c > 0, 6 > 0 and a sequence { r , }  wi th  

r ,  -~ l -  as n ~ oc such tha t  

(1.1) If(r,~ei°(~*))l >_ c(1 - r n )  -2p/k,  s = 1,2 . . . . .  k, 

and 

(1.2) 6_<]0(~ j ) - o ~ s )  1 < 2 7 r - 6 ,  l _ < j < s _ < k ,  

for all n. By tak ing  subsequences we may  assume e iO(~s) ~ e ies as n ~ o(3, s ---- 

1, 2 . . . . .  k. For  f E #(p, k) we say t ha t  f a t t a ins  ma x ima l  growth  on the  k rays  

e ie', s = 1,2 . . . . .  k. 

Let M ( r )  = maXlzl= ~ I f (z) l .  If  f E p(p) and if l i m ~ _ l - ( 1 -  r )2"M(r )  = a > O, 

then  f E p(p, 1). 
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Let  z l , . . . ,  Zq be the zeros of f ( z )  in D. For an appropriate constant c # 0 put  

h(z)  = cl-Iq=l(Z - z j)  so that  

(1.3) , f ( z )  ,og = E 
r t : l  

is regular in D. The  following theorem due to Aharonov [1] is a generalization 

of Bazilevic's Theorem [2]. 

THEOREM A: Suppose that f c p(p, 1) and attains maximal  growth on e ie° and 

that 

(1.4) If(z)l > A > 0, 0 < r0 < [z[ < 1, 

for some constants A and  ro. Then 

CX3 

(1.5) ~ n[cn 1 _iOol2 - - e  < -t-OO, 
T/, 

r t : l  

where {c, } are given by (1.3). 

Since Bazilevic's Theorem is important ,  it, is natural  to ask what  is the sufficient 

and necessary condition for which (1.5) holds. In the present paper  we shall solve 

this problem. Moreover, we answer this question for the class p(p, k). 

2. A n o t h e r  d e f i n i t i o n  o f  t h e  c lass  #(p, k) 

Let the simply connected regions D1 . . . .  , Dk be disjoint and contained in D, and 

fur thermore  satisfy (i) e/°~ ~ ODs, s = 1, 2 . . . . .  k, (ii) D1 t2 D2 u --- u / ) k  = / ) ,  

(iii) for each j ,  the function 

k z 
t (z)  = -~ log (1 - ze -i° '  )2/k (1 -- ze -i°~ )2/~ 

maps Dj one to one conformally onto the strips Sj = {t: by < I m t  < by + 7r}, 

where b 5 is real. The  possibility follows from the argument in [7, p. 44]. The  

inverse mapping z = ~j (t) maps Sj onto Dj.  

Consider the function gj(t)  = f(~flj(t)), t G Sj. Let n j ( w )  = n(gj = w, Sj)  

be the number  of roots in Sj of the equation gj (t) = w. Let 

1 [ 2 .  
Pj (R)  = 2-~ Jo nj(Rei°)d0" 
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It is clear tha t  nj(w) = n( f  = w, Dj) and 

Set 

k 1 fo 2~ ~-~ Pj(R) < P(R) = P(R ,D , I )  = ~ n( f  = aeie, D)dO. 
j----1 

~j(R)  = {t: Igj(t)l = R, t • S j } ,  ~J)(R)  = inf{Ret:  t • ?j (R)} ,  

~J)(R)  = sup{Ret:  t • "~j(R)}, wj(R)  = ~J)(R)  - ~J)(R) .  

Lemma 3 in [5, p. 153] then gives 

1 f If('~i°j)l dR 1 
- / + O(1) ,  (2.1) 2 JRo RPj(R) - log 1 - r r - *  1- .  

So it is easy to see tha t  gj(t) satisfies the hypotheses of Lemma 1 in [4]. By (4.2) 

in [4, p. 105] we have 

1 
(2.2) ~J)(Rj) - ~J)(Ro) >_ -~ ~ '  tpl(t) dt, 

for some positive Ro and all Rj >Ro.  We put  Rj = If(rei°J)l. Since Igj(t(rei°J)) I 
= Rj, t(re i°j) E "~j(Rj), thus 

q 

(2.3) ~lJ)(nJ ) <- l°g{rk/2 I I  l1 - rei(°'-°')l-1) < ~J)(Rj). 
j----1 

Now theorem 2 in [4, p. 108] shows tha t  

1/R'~JtP~(t) d t o  (2.4) ~ J ) ( R j ) -  ~ --* lff, r--* 1 - ,  s = 1,2, 

where - o c  < fl < +oo.  From (2.1), (2.3) and (2.4) we obtain the following 

Lemma.  

LEMMA 2.1: I f f  E #(p,k), then limR~+~wj(R) = 0 , j  = 1 , 2 , . . . , k .  

THEOREM 2.1: If  f E #(p, k ), then there exists a positige constant A independent 
of r such that 

k 

(1 - r) 2pk I I  If(rei°J)l min If(re~O')lk(k-1) < A < +oc, 0 < r < 1. 
l<_j<k 

j = l  
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Proof 

(2.5) 

Set Rj = If(re~°~)l, M* = minl<j<k Rj. Then (2•2) and (2•3) give 

k 
log{r} 1-I lei°" - rei°'l-1} >- {~J)(Rj) 

We sum (2.5) from j = 1 to k to find 

(2.6) 

= ~)(R~)  - w~(Rs) 

1 [Rj dt 
>_ ~J)(Ro) + 2 JRo tPj(t) wj(Rj). 

log{ H ]ei°" - rei°" I-2} + Iog(1-  r) -k 
l<v<s<_k 

k 1 ~1 f~J  dt _> Z [ ~ J ) ( R o )  - wj(Rj)] + -~ tPj(t) 
j = l  

k k2 [M" dt 
> ~ [ ~ ) ( R o )  - wj(Rj)] + T JRo k 

J=' t E P j ( t  ) 
j=l 

+ 2 tPj ('t) 

> E [ ~ J ) ( R o )  - wj(Rj)] + t~--[-~ + t~i-,~ 
j = l  '---- 

k ~ k ( k  - 1)/RvI* ~ , d t  21~1/R Ry tP(t)'dt = E [ ~ J ) ( R o )  - wj(Ry)] + tPtt ~ + 
j----1 o "= o 

where we have used the inequality between arithmetric and harmonic means• 

From Lemma 2.1 in [6, p. 23], we have 

(2.7) o tP(t---7 >- log Ro 

Combining this with (2.6), we obtain 

1 

2p 

log(1 - r) -k +log{ H [ei°~ - re~°s]-2} 
l<v<s<_k 

k 
k(k-  1) M" 1 Z l o g n j  ' > C(Ro, r)+ -2p log + ~P j=l 

(2.8) 

where 
k k 2 1 1 

C(Ro, r) = E E # ( R o ) -  + - 
j----1 
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Since Ro is fixed, we see from Lemma 2.1 that C(R0, r) is bounded as r tends to 

1. The conclusion of Theorem 2.1 now follows from (2.8). This proof is complete. 

THEOREM 2.2: Suppose that f ( z )  is areally mean p-valent in D. Then f C 

p(p, k) i f  and only if  there exist k distinct points ei°~, . . . ,  e i°k on Ix[ = 1, and 

there exist a constant 5 > 0 and a sequence {rn} with rn ---* 1- as n --* oe such 

that 

(2.9) 

and 

] f ( r , / °J) l  > 6 ( 1 - r n )  -2p/k, j = 1 ,2 , . . . , k ,  

1 
(2.10) M(r~) < 6 ( 1 -  rn)-2P/k, 

for all n. 

Proof." We only need to prove the necessity. From [5, p. 153], f E #(p, k) implies, 

in the notation of [4, p. 119], that  f ~ f ( k ) .  Thus we have [4, p. 128] 

(2.11) sup{If(z)[: z E Dj, [z[ = r} < 2[f(rei°~)[ < 2M(r) < 4 max [f(rei°J)[, 
- - - l < j < _ k  

for all r sufficiently near 1. Taking {r,} and {0 (j) } satisfying (1.1) and (1.2), we 

have rne ie(~j) E Dj, for all large n. Thus 

2[f(r,~e~e~)l > sup{If(z)l: z C Dj, [z[ = r~} 
(2.12) 

> If(rnei°(~J))l > c(1 - rn) -2v/k. 

We deduce from (2.11) and (2.12) that 

k 
(1 - rn) 2pk min [f(rnei°~)[ k(k-1) 1-I If(r~e~°3)l > elM(rn)(1 - r~)Wk,  

l<_j<k j----1 

for all large n, where cl is a positive constant. Theorem 2.1 shows that the left- 

hand side is bounded by a constant independent of n, hence (2.10) holds. This 

completes the proof of Theorem 2.2. 
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3. O n  B a z i l e v i c ' s  T h e o r e m  

In this section, we shall denote  by cl, c2 . . . .  any constants  independent  of  r. 

LEMMA 3.1: Suppose that f E Iz(p,k) and that Z 1 . . . .  ,Zq are the zeros o f f  in 

D. Then we have for 0 E [0, 2~], 

If(r2ei°)l(1 -r2)2P <_ el°P+½]f(rle~°)[(1- r l )  2p, 

(3.1) 1(1 + max  Izjl) < rl < r2 < 1. 
l<j<_q 

In particular, 

(3.2) 

Proo~ 

~ i  1I(~2ei°)l < 2 log + 10, dR 1 7" 1 

(~,e,o)l RP(R)  - 1 - -  r2 

Combining this with (2.7), we obta in  

log If(r2ei°)l 1 - rl 
if(rleio)l < 2plog 1 - r2 

M(r) < 4Pel°p+½M(r2), 1(1 + m a x  [zjl ) < r 2 < 1. 
- -  l< j<q  

From L e m m a  2.4 in [6, p. 28], we have 

1 ( 1 +  m a x  I z j l ) < r l < r 2 < l .  
-2 l ~ j ~ q  

1 + l o p +  ~. 

This  shows (3.1) is t rue and (3.2) follows easily by taking r l  = r 2 = r 2 in (3.1). 

LEMMA 3.2: Suppose that f E tt(p, k) and that z l , . . . ,  z a are the zeros o f f  in 

D. Then, i frn is defined in Theorem 2.2, we have 

JR M(~) g ( R ,  ro < Izl <_ x /~)  
o R 3  d R  = O(1),  as n ~ oc, 

where ro = ¼(3 + maxl<i_<q Izjl), Ro is a fixed positive constant, and 

1 f flw n ( f  = w, ro < Izl < v ~ n ) d u d v -  pR 2, H(R,  ro < Izl < x/7-~) = -~ I<R 

w = u + v i .  

Proo~ Choose a fixed to E (ro, 1), let r 2 E (to, 1) and put  ~j = toe i°j, fj(~) 

1 (r + r 2) - to. Then  if to is chosen near  enough = f ( ( j  + @), ( E D, where 5 = 

to 1, we see tha t  

k 1 [2~  
E Pj(R) < P(R,  ro <_ Izl < r) = 2-~ Jo n ( f  = aei°,ro <_ Iz[ < r)dO, 
j = l  
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where 

I j f o  2~ Pj(R) = ~ n(fj  = Rei°,D)dO. 

Applying Theorem 2.2 in [6, p. 21] to fj (~), we obtain 

f ' ' ( r%~oj) idR 2log ~ 2  + (3.3) - -  < C2. 
If(~j)l RPj(R) - I - r 

Set r 2 = r n ,  M 0 = maxl<j<k If(~j)] and M* = minl<j<k If(r2ei°J)l; it follows 

from the inequality between arithmetic and harmonic means that 

/ i  z* dR /M4* 1 ~ R P : ( R ) d R  
o RP(R,  ro <_ Izl < r) <- o -~ = 

(s.4) 
1 k rjf(r%~oj)l dR 2 1 

-< -~j~lJff(~;),= RPj(R-------) - < ~ l o g - -  + C 3 . 1  - r 2 

From Lemma 2.1 in [6, p. 23] and Theorem 2.2, we have 

/ i  f* -H(R ,  ro < tzl < 
o p2 R 2 r )  dR 

f l  . dR 1 - - log M* + C4 (3.5) <- ~ RP(R, ro <_ Iz[ < r) p 

2 1 1 log M* + C5 <_ C6. _< ~ log 1 - r 2 p 

The fact that n( f  = w, ro <_ Izl < r) is non-negative gives -H(R ,  ro <_ [zl <_ r) < 
pR a. Hence, we get from Lemma 3.1 and Theorem 2.2 that 

/ R M ° / ; ( T ~ ) - H ( R ,  ro<-Izl<rn) 
(3.6) o + R3 dR 

CsM(r,~) Mo M(rn) < C T + p l o g  M* < C 9 "  < plog ~ + p l o g  M,(r2) _ (r~) - 

Lemma 3.2 follows directly from (3.5) and (3.6). 

LEMMA 3.3: Let the function f be areally mean p-valent in D, and let ro be 
defined in Lemma 3.2. Set m(r) = min~o<]z]<~ ]f(z)I. Then 

_ [ h(z)j[ ax@ 

M(r) f M ( , )  g (R ,  ro <_ Izl < r) 
----plogm~(r) + ~  R3 - dR+B(r ) ,  r o < r < l ,  

Jm(~) 
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where B(r) is a bounded function in [ro, 1). 

Proo~ By the residue theorem, we easily obtain 

I/,0<,,,<, [1o  s(z)l _ _ h(z)J I dxdy 
(3.8) 

1 f f  f '(z) 2 1 q q r2 -S j z t  
=2---~JJ~o<lzl<~ ~ d x d Y - 2 Z ~ - ~ l ° g r ~  5jzt' 

- - -  j = l  t= l  

where Zl , . . . ,  Zq are zeros of f(z) in D. From (6) and (7) in [3] (or (6) in [1]), we 
have 

1 S / o < i ~ l < ~  f'(z) 2 27r _ _ ~ dxdy 

fM(r) P(R, ro <_ Iz[ < r) M(~) -- d R = [  P +h(R)  dR 
I R tJm(r) R Jm(r) 

(3.9) 
= p log ~M(r) + 1 [ M(~) all(R, roR 2< Izl ___ r) 

2 Jm(r) 

[M(~) H(R, ro <_ lzl < r) 
-4-/jm(r) R3 - dR. 

Set 

r,o<,(:)l': 
_ t h(z)JI axd  

(3.1o) 
l fM@)dH(R,  r o < l z l < r  ) 1 q q r2 -2 j z t  

+2am(r)--  R 2 - - 2 E E l ° g r g  2jzt 
j = l  t= l  

Since f is areally mean p-valent in D, 

H(R, ro <_ Izl < r) < 0. 
- p  _< R 2 

This shows that B(r) is a bounded function in [ro, 1). From (3.8) to (3.10), we 
obtain easily (3.7) and the proof is complete. 

THEOREM 3.1: Suppose that S E #(p, k), and attains maxima/growth on tj = 
e i°j (j = 1, 2, . . . ,  k). Then 

(3.11) m c,, mk t-~ < +c¢ 



Vol. 100, 1997 M E A N  p-VALENT F U N C T I O N S  335 

if and only if 

(3.12) 

where {c,~} are defined in (1.3), ro is defined in Lemma 3.2 and Ro is a fixed 
positive number. 

It should be noted that under the hypotheses of Theorem A, we have 

n(f = w, ro < Izl < 1) = 0 for Iwl < A. Thus, Theorem 3.1 certainly implies 

Theorem A. 

Proo~ From Lemma 3.3, we have 

k 

mk 
m = l  j = l  

~llk,. . . ,  k 1 S "  ~rrt 2_2m __ t j l r  2 
r n = l  m = l  j = l  j = l  

1 , M(r) 1 [M(r) H(R, ro<iZ I< 

1 1 1 ~ f(r2tj) 
+ ~ log - -  log + Bl(r)  

1 - r 2 kp h(r2tj) 
j = l  

oo 

E cm(r2tj)m 

{ } = 1 log (1 - r2)-2P/kM(r) n If(r2ty )l-2/k 
j = l  

' i :  ° l { ' i S ,  o } + - -  - n ( S  = w ,  r o  < Izl  < r)dudv dR 
2p 2 (~) ~ 7r I_<R - 

1 [M(,) H(R, ro <_ I z l  < 
+ 2p 2 JRo R 3 r) dR + B2 (r), 

where Bl(r), B2(r) are bounded functions in [ro, 1). Let rn be defined as in 

Theorem 2.2, and set 

k 

G~ = ~ Iog{(1 - r~)-~vlkM(.~~d) H l.f(r.tA1-21k} 
j=l 

_1_ [M(~ H(R, ro < Izl < VT;.) 
+ 2P 2 JRo R3 dR + B2(rn). 
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Then Lemmas 3.1, 3.2 and Theorem 2.2 show that {Sn} is a bounded sequence. 

By Levi's Theorem, 

im% { 1 3 / / ~  } lira n(]  = w, ro < Iz} < r)dudv dR ,~-1- (~) ~ i<_n 
(3.13) 

io"°{' iS,, n(f:W, ro<izi<l)dudv}dR. -- ~g N<R - 

If we note that I(r) is nondecreasing in [ro, I), and that 

i //o {lfj. S ( ~ , , ) = S n + ~  ( ¢ ~ : ~  ~ i<_" - -  - -  

f o r  all large n, then from (3.13) we can complete the proof of Theorem 3.1. 

4. A n  e x a m p l e  

We now construct a function g(z) in #(p,k)  that satisfies (3.12) but does not 

satisfy (1.4). Set 

_ _  z i l + z  l + z  1 z 1 'i )1 ____2_7 + _ _ _ _  log _ _ ,  
f l ( z ) - -  2 ( l - z )  2 + ( 2 - ~  2 r r l - z  1 - z  t=l < 1. 

E a s y  calculat ions show tha t  Re{(1 - z)V~(z)} > 0, I-[ < 1. H e n c e  Yl(z) is 

univalent in D. By considering f l(ei°),  we see that f l (z)  omits a disk 

[ w - w o l  < e for some wo E C and e > 0. Put  f2(z) = f x ( z ) - w o ,  and let 

G~ be a simply connected domain such that (i) f2(D) C G6, (ii) for all small 

p > O, c~ n {Iwl < p} : {w : u+vi: u 2 + v  ~ < p=,o < • < u '+~,o < ~, < p}, 

where 5 > 0. By the Riemann mapping theorem, we see that there is a function 

of the form f ( z )  = - w o  + alz  + .. . ,  z E D, that maps D univatently onto G~. 

Since f2(z) is subordinate to f ( z ) ,  the Hayman index ~ of f cannot be smaller 

1 Thus f C #(1, 1). Let W ( R )  denote the area of the than that of f2, so fl _> ~. 

portion of G~ lying in ]w I < R. From (ii), we find W ( R )  < R 2+~ for all small R. 

We see-that f satisfies (3.12). Obviously, f does not satisfy (1.4). 

In general, for the function g(z) = f ( zk )  v/k, we get from Lemma 2 in 

[6, p. 95] that g(z) is circumferentially mean p-valent in D. Since f C #(1, 1), 

g(z) C #(p, k). Clearly, g(z) satisfies (3.12) but does not satisfy (1.4). 
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