ON A THEOREM OF BAZILEVIC FOR AREALLY MEAN p-VALENT FUNCTIONS ATTAINING MAXIMAL GROWTH ON k RAYS*

BY

XINHAN DONG

Department of Mathematics, Hunan Normal University, Changsha 410081, China

ABSTRACT

Let $\mu(p, k)$ denote the class of areally mean p-valent functions attaining maximal growth on k rays. The aim of this article is to get the sufficient and necessary condition for which Bazilevic's theorem holds for $f \in \mu(p, k)$.

1. Introduction

Let $\mu(p)$ denote the class of functions f which are areally mean p-valent in the unit disk $D = \{z: |z| < 1\}$. For integer k, we say f is in $\mu(p, k)$ (see [5, p. 148]) if $f \in \mu(p)$ and we can find constants c > 0, $\delta > 0$ and a sequence $\{r_n\}$ with $r_n \to 1^-$ as $n \to \infty$ such that

$$(1.1) |f(r_n e^{i\theta_n^{(s)}})| \ge c(1-r_n)^{-2p/k}, s = 1, 2, \dots, k,$$

and

(1.2)
$$\delta \le |\theta_n^{(j)} - \theta_n^{(s)}| < 2\pi - \delta, \quad 1 \le j < s \le k,$$

for all n. By taking subsequences we may assume $e^{i\theta_n^{(s)}} \to e^{i\theta_s}$ as $n \to \infty$, $s = 1, 2, \ldots, k$. For $f \in \mu(p, k)$ we say that f attains maximal growth on the k rays $e^{i\theta_s}$, $s = 1, 2, \ldots, k$.

Let $M(r) = \max_{|z|=r} |f(z)|$. If $f \in \mu(p)$ and if $\lim_{r \to 1^-} (1-r)^{2p} M(r) = \alpha > 0$, then $f \in \mu(p, 1)$.

^{*} Project supported by the National Natural Science Foundation of China. Received September 7, 1995

Let z_1, \ldots, z_q be the zeros of f(z) in D. For an appropriate constant $c \neq 0$ put $h(z) = c \prod_{j=1}^q (z - z_j)$ so that

(1.3)
$$\log \frac{f(z)}{h(z)} = 2p \sum_{n=1}^{\infty} c_n z^n$$

is regular in D. The following theorem due to Aharonov [1] is a generalization of Bazilevic's Theorem [2].

THEOREM A: Suppose that $f \in \mu(p, 1)$ and attains maximal growth on $e^{i\theta_0}$ and that

$$|f(z)| \ge A > 0, \quad 0 < r_0 \le |z| < 1,$$

for some constants A and r_0 . Then

(1.5)
$$\sum_{n=1}^{\infty} n \left[c_n - \frac{1}{n} e^{-i\theta_0} \right]^2 < +\infty,$$

where $\{c_n\}$ are given by (1.3).

Since Bazilevic's Theorem is important, it is natural to ask what is the sufficient and necessary condition for which (1.5) holds. In the present paper we shall solve this problem. Moreover, we answer this question for the class $\mu(p,k)$.

2. Another definition of the class $\mu(p,k)$

Let the simply connected regions D_1, \ldots, D_k be disjoint and contained in D, and furthermore satisfy (i) $e^{i\theta_s} \in \partial D_s$, $s = 1, 2, \ldots, k$, (ii) $\bar{D}_1 \cup \bar{D}_2 \cup \cdots \cup \bar{D}_k = \bar{D}$. (iii) for each j, the function

$$t(z) = \frac{k}{2} \log \frac{z}{(1 - ze^{-i\theta_1})^{2/k} \cdots (1 - ze^{-i\theta_k})^{2/k}}$$

maps D_j one to one conformally onto the strips $S_j = \{t: b_j < \text{Im } t < b_j + \pi\}$, where b_j is real. The possibility follows from the argument in [7, p. 44]. The inverse mapping $z = \varphi_j(t)$ maps S_j onto D_j .

Consider the function $g_j(t) = f(\varphi_j(t))$, $t \in S_j$. Let $n_j(w) = n(g_j = w, S_j)$ be the number of roots in S_j of the equation $g_j(t) = w$. Let

$$P_j(R) = \frac{1}{2\pi} \int_0^{2\pi} n_j(\mathrm{Re}^{i\theta}) d\theta.$$

It is clear that $n_j(w) = n(f = w, D_j)$ and

$$\sum_{j=1}^{k} P_{j}(R) \le P(R) = P(R, D, f) = \frac{1}{2\pi} \int_{0}^{2\pi} n(f = \operatorname{Re}^{i\theta}, D) d\theta.$$

Set

$$\gamma_j(R) = \{t : |g_j(t)| = R, \quad t \in S_j\}, \quad \xi_1^{(j)}(R) = \inf\{\text{Re } t : t \in \gamma_j(R)\},$$
$$\xi_2^{(j)}(R) = \sup\{\text{Re } t : t \in \gamma_j(R)\}, \quad w_j(R) = \xi_2^{(j)}(R) - \xi_1^{(j)}(R).$$

Lemma 3 in [5, p. 153] then gives

(2.1)
$$\frac{1}{2} \int_{R_0}^{|f(re^{i\theta_j})|} \frac{dR}{RP_j(R)} = \log \frac{1}{1-r} + O(1), \quad r \to 1^-.$$

So it is easy to see that $g_j(t)$ satisfies the hypotheses of Lemma 1 in [4]. By (4.2) in [4, p. 105] we have

(2.2)
$$\xi_2^{(j)}(R_j) - \xi_1^{(j)}(R_0) \ge \frac{1}{2} \int_{R_0}^{R_j} \frac{1}{t P_j(t)} dt,$$

for some positive R_0 and all $R_j > R_0$. We put $R_j = |f(re^{i\theta_j})|$. Since $|g_j(t(re^{i\theta_j}))| = R_j$, $t(re^{i\theta_j}) \in \gamma_j(R_j)$, thus

(2.3)
$$\xi_1^{(j)}(R_j) \le \log\{r^{k/2} \prod_{j=1}^q |1 - re^{i(\theta_s - \theta_j)}|^{-1}\} \le \xi_2^{(j)}(R_j).$$

Now theorem 2 in [4, p. 108] shows that

(2.4)
$$\xi_s^{(j)}(R_j) - \frac{1}{2} \int_{R_0}^{R_j} \frac{1}{tP_j(t)} dt \to \beta, \quad r \to 1^-, \quad s = 1, 2,$$

where $-\infty < \beta \le +\infty$. From (2.1), (2.3) and (2.4) we obtain the following Lemma.

LEMMA 2.1: If $f \in \mu(p,k)$, then $\lim_{R\to+\infty} w_j(R) = 0, j = 1, 2, \ldots, k$.

THEOREM 2.1: If $f \in \mu(p, k)$, then there exists a positive constant A independent of r such that

$$(1-r)^{2pk} \prod_{j=1}^{k} |f(re^{i\theta_j})| \min_{1 \le j \le k} |f(re^{i\theta_j})|^{k(k-1)} \le A < +\infty, \quad 0 < r < 1.$$

Proof: Set $R_j = |f(re^{i\theta_j})|$, $M^* = \min_{1 \le j \le k} R_j$. Then (2.2) and (2.3) give

$$\log\{r^{\frac{k}{2}} \prod_{s=1}^{k} |e^{i\theta_s} - re^{i\theta_j}|^{-1}\} \ge \xi_1^{(j)}(R_j)$$

$$= \xi_2^{(j)}(R_j) - w_j(R_j)$$

$$\ge \xi_1^{(j)}(R_0) + \frac{1}{2} \int_{R_j}^{R_j} \frac{dt}{tP_i(t)} - w_j(R_j).$$

We sum (2.5) from j = 1 to k to find

$$\log \{ \prod_{1 \leq v < s \leq k} |e^{i\theta_v} - re^{i\theta_s}|^{-2} \} + \log(1 - r)^{-k}$$

$$\geq \sum_{j=1}^k [\xi_1^{(j)}(R_0) - w_j(R_j)] + \frac{1}{2} \sum_{j=1}^k \int_{R_0}^{R_j} \frac{dt}{tP_j(t)}$$

$$\geq \sum_{j=1}^k [\xi_1^{(j)}(R_0) - w_j(R_j)] + \frac{k^2}{2} \int_{R_0}^{M^*} \frac{dt}{t\sum_{j=1}^k P_j(t)} + \frac{1}{2} \sum_{j=1}^k \int_{M^*}^{R_j} \frac{dt}{tP_j(t)}$$

$$\geq \sum_{j=1}^k [\xi_1^{(j)}(R_0) - w_j(R_j)] + \frac{k^2}{2} \int_{R_0}^{M^*} \frac{dt}{tP(t)} + \frac{1}{2} \sum_{j=1}^k \int_{M^*}^{R_j} \frac{dt}{tP(t)}$$

$$= \sum_{j=1}^k [\xi_1^{(j)}(R_0) - w_j(R_j)] + \frac{k(k-1)}{2} \int_{R_0}^{M^*} \frac{dt}{tP(t)} + \frac{1}{2} \sum_{j=1}^k \int_{R_0}^{R_j} \frac{dt}{tP(t)},$$

where we have used the inequality between arithmetric and harmonic means. From Lemma 2.1 in [6, p. 23], we have

(2.7)
$$\int_{R_0}^{R} \frac{dt}{tP(t)} \ge \frac{1}{p} \log \frac{R}{R_0} - \frac{1}{2p}.$$

Combining this with (2.6), we obtain

(2.8)
$$\log(1-r)^{-k} + \log\{\prod_{1 \le v < s \le k} |e^{i\theta_v} - re^{i\theta_s}|^{-2}\}$$

$$\geq C(R_0, r) + \frac{k(k-1)}{2p} \log M^* + \frac{1}{2p} \sum_{i=1}^k \log R_j,$$

where

$$C(R_0,r) = \sum_{j=1}^k [\xi_1^{(j)}(R_0) - w_j(R_j)] + \frac{k^2}{2p} \Big(\log \frac{1}{R_0} - \frac{1}{2}\Big).$$

Since R_0 is fixed, we see from Lemma 2.1 that $C(R_0, r)$ is bounded as r tends to 1. The conclusion of Theorem 2.1 now follows from (2.8). This proof is complete.

THEOREM 2.2: Suppose that f(z) is areally mean p-valent in D. Then $f \in \mu(p,k)$ if and only if there exist k distinct points $e^{i\theta_1}, \ldots, e^{i\theta_k}$ on |z| = 1, and there exist a constant $\delta > 0$ and a sequence $\{r_n\}$ with $r_n \to 1^-$ as $n \to \infty$ such that

$$(2.9) |f(r_n e^{i\theta_j})| \ge \delta(1 - r_n)^{-2p/k}, j = 1, 2, \dots, k,$$

and

(2.10)
$$M(r_n) \le \frac{1}{\delta} (1 - r_n)^{-2p/k},$$

for all n.

Proof: We only need to prove the necessity. From [5, p. 153], $f \in \mu(p, k)$ implies, in the notation of [4, p. 119], that $f \in \mathcal{F}(k)$. Thus we have [4, p. 128]

$$(2.11) \quad \sup\{|f(z)|: z \in D_j, |z| = r\} \le 2|f(re^{i\theta_j})| \le 2M(r) \le 4 \max_{1 \le j \le k} |f(re^{i\theta_j})|,$$

for all r sufficiently near 1. Taking $\{r_n\}$ and $\{\theta_n^{(j)}\}$ satisfying (1.1) and (1.2), we have $r_n e^{i\theta_n^{(j)}} \in D_j$, for all large n. Thus

(2.12)
$$2|f(r_ne^{i\theta_j})| > \sup\{|f(z)|: z \in D_j, |z| = r_n\}$$
$$\geq |f(r_ne^{i\theta_n^{(j)}})| > c(1 - r_n)^{-2p/k}.$$

We deduce from (2.11) and (2.12) that

$$(1-r_n)^{2pk} \min_{1 \le j \le k} |f(r_n e^{i\theta_j})|^{k(k-1)} \prod_{j=1}^k |f(r_n e^{i\theta_j})| \ge c_1 M(r_n) (1-r_n)^{2p/k},$$

for all large n, where c_1 is a positive constant. Theorem 2.1 shows that the left-hand side is bounded by a constant independent of n, hence (2.10) holds. This completes the proof of Theorem 2.2.

3. On Bazilevic's Theorem

In this section, we shall denote by c_1, c_2, \ldots any constants independent of r.

LEMMA 3.1: Suppose that $f \in \mu(p, k)$ and that z_1, \ldots, z_q are the zeros of f in D. Then we have for $\theta \in [0, 2\pi]$,

(3.1)
$$|f(r_2e^{i\theta})|(1-r_2)^{2p} \le e^{10p+\frac{1}{2}}|f(r_1e^{i\theta})|(1-r_1)^{2p},$$

$$\frac{1}{2}(1+\max_{1\le j\le q}|z_j|) < r_1 < r_2 < 1.$$

In particular,

(3.2)
$$M(r) \le 4^p e^{10p + \frac{1}{2}} M(r^2), \quad \frac{1}{2} (1 + \max_{1 \le j \le q} |z_j|) < r^2 < 1.$$

Proof: From Lemma 2.4 in [6, p. 28], we have

$$\left| \int_{|f(r_1e^{i\theta})|}^{|f(r_2e^{i\theta})|} \frac{dR}{RP(R)} \right| \le 2\log \frac{1-r_1}{1-r_2} + 10, \quad \frac{1}{2}(1+\max_{1\le j\le q}|z_j|) < r_1 < r_2 < 1.$$

Combining this with (2.7), we obtain

$$\log \frac{|f(r_2e^{i\theta})|}{|f(r_1e^{i\theta})|} < 2p\log \frac{1-r_1}{1-r_2} + 10p + \frac{1}{2}.$$

This shows (3.1) is true and (3.2) follows easily by taking $r_1 = r_2^2 = r^2$ in (3.1).

LEMMA 3.2: Suppose that $f \in \mu(p,k)$ and that z_1, \ldots, z_q are the zeros of f in D. Then, if r_n is defined in Theorem 2.2, we have

$$\int_{R_0}^{M(r_n)} \frac{H(R, r_0 \le |z| \le \sqrt{r_n})}{R^3} dR = O(1), \quad \text{ as } n \to \infty,$$

where $r_0 = \frac{1}{4}(3 + \max_{1 \le j \le q} |z_j|)$, R_0 is a fixed positive constant, and

$$H(R, r_0 \le |z| < \sqrt{r_n}) = \frac{1}{\pi} \int \int_{|w| \le R} n(f = w, r_0 \le |z| < \sqrt{r_n}) du dv - pR^2,$$

w = u + vi.

Proof: Choose a fixed $t_0 \in (r_0, 1)$, let $r^2 \in (t_0, 1)$ and put $\xi_j = t_0 e^{i\theta_j}$, $f_j(\xi) = f(\xi_j + \delta \xi)$, $\xi \in D$, where $\delta = \frac{1}{2}(r + r^2) - t_0$. Then if t_0 is chosen near enough to 1, we see that

$$\sum_{i=1}^{k} P_j(R) \le P(R, r_0 \le |z| < r) = \frac{1}{2\pi} \int_0^{2\pi} n(f = \operatorname{Re}^{i\theta}, r_0 \le |z| < r) d\theta,$$

where

$$P_j(R) = \frac{1}{2\pi} \int_0^{2\pi} n(f_j = \operatorname{Re}^{i\theta}, D) d\theta.$$

Applying Theorem 2.2 in [6, p. 21] to $f_i(\xi)$, we obtain

(3.3)
$$\int_{|f(\xi_j)|}^{|f(r^2e^{i\theta_j})|} \frac{dR}{RP_j(R)} \le 2\log\frac{1}{1-r^2} + C_2.$$

Set $r^2 = r_n$, $M_0 = \max_{1 \le j \le k} |f(\xi_j)|$ and $M^* = \min_{1 \le j \le k} |f(r^2 e^{i\theta_j})|$; it follows from the inequality between arithmetic and harmonic means that

(3.4)
$$\int_{M_0}^{M^*} \frac{dR}{RP(R, r_0 \le |z| < r)} \le \int_{M_0}^{M^*} \frac{1}{k^2} \sum_{j=1}^k \frac{1}{RP_j(R)} dR$$
$$\le \frac{1}{k^2} \sum_{j=1}^k \int_{|f(\xi_j)|}^{|f(r^2 e^{i\theta_j})|} \frac{dR}{RP_j(R)} \le \frac{2}{k} \log \frac{1}{1 - r^2} + C_3.$$

From Lemma 2.1 in [6, p. 23] and Theorem 2.2, we have

(3.5)
$$\int_{M_0}^{M^*} \frac{-H(R, r_0 \le |z| < r)}{p^2 R^2} dR$$

$$\le \int_{M_0}^{M^*} \frac{dR}{RP(R, r_0 \le |z| < r)} - \frac{1}{p} \log M^* + C_4$$

$$\le \frac{2}{k} \log \frac{1}{1 - r^2} - \frac{1}{p} \log M^* + C_5 \le C_6.$$

The fact that $n(f = w, r_0 \le |z| < r)$ is non-negative gives $-H(R, r_0 \le |z| \le r) \le pR^2$. Hence, we get from Lemma 3.1 and Theorem 2.2 that

(3.6)
$$\int_{R_0}^{M_0} + \int_{M^*}^{M(r_n)} \frac{-H(R, r_0 \le |z| < r_n)}{R^3} dR \\ \le p \log \frac{M_0}{R_0} + p \log \frac{M(r_n)}{M^*(r^2)} \le C_7 + p \log \frac{C_8 M(r_n)}{M^*(r_n)} \le C_9.$$

Lemma 3.2 follows directly from (3.5) and (3.6).

LEMMA 3.3: Let the function f be areally mean p-valent in D, and let r_0 be defined in Lemma 3.2. Set $m(r) = \min_{r_0 \le |z| \le r} |f(z)|$. Then

(3.7)
$$\frac{1}{2\pi} \int \int_{|z| \le r} \left| \left[\log \frac{f(z)}{h(z)} \right]' \right|^2 dx dy$$
$$= p \log \frac{M(r)}{m(r)} + \int_{m(r)}^{M(r)} \frac{H(R, r_0 \le |z| \le r)}{R^3} dR + B(r), \quad r_0 \le r < 1,$$

where B(r) is a bounded function in $[r_0, 1)$.

Proof: By the residue theorem, we easily obtain

(3.8)
$$\frac{1}{2\pi} \int \int_{r_0 \le |z| \le r} \left| \left[\log \frac{f(z)}{h(z)} \right]' \right|^2 dx dy \\ = \frac{1}{2\pi} \int \int_{r_0 \le |z| \le r} \left| \frac{f'(z)}{f(z)} \right|^2 dx dy - \frac{1}{2} \sum_{i=1}^q \sum_{t=1}^q \log \frac{r^2 - \bar{z}_j z_t}{r_0^2 - \bar{z}_j z_t},$$

where z_1, \ldots, z_q are zeros of f(z) in D. From (6) and (7) in [3] (or (6) in [1]), we have

(3.9)
$$\frac{1}{2\pi} \int \int_{r_0 \le |z| \le r} \left| \frac{f'(z)}{f(z)} \right|^2 dx dy$$

$$= \int_{m(r)}^{M(r)} \frac{P(R, r_0 \le |z| \le r)}{R} dR = \int_{m(r)}^{M(r)} \frac{p + h(R)}{R} dR$$

$$= p \log \frac{M(r)}{m(r)} + \frac{1}{2} \int_{m(r)}^{M(r)} d\frac{H(R, r_0 \le |z| \le r)}{R^2}$$

$$+ \int_{m(r)}^{M(r)} \frac{H(R, r_0 \le |z| \le r)}{R^3} dR.$$

Set

(3.10)
$$B(r) = \frac{1}{2\pi} \int \int_{|z| \le r_0} \left| \left[\log \frac{f(z)}{h(z)} \right]' \right|^2 dx dy + \frac{1}{2} \int_{m(r)}^{M(r)} d\frac{H(R, r_0 \le |z| \le r)}{R^2} - \frac{1}{2} \sum_{i=1}^q \sum_{t=1}^q \log \frac{r^2 - \bar{z}_j z_t}{r_0^2 - \bar{z}_j z_t}.$$

Since f is areally mean p-valent in D,

$$-p \leq \frac{H(R, r_0 \leq |z| \leq r)}{R^2} \leq 0.$$

This shows that B(r) is a bounded function in $[r_0, 1)$. From (3.8) to (3.10), we obtain easily (3.7) and the proof is complete.

THEOREM 3.1: Suppose that $f \in \mu(p,k)$, and attains maximal growth on $t_j = e^{i\theta_j}$ (j = 1, 2, ..., k). Then

$$(3.11) \sum_{m=1}^{\infty} m \left| c_m - \frac{1}{mk} \sum_{j=1}^k \overline{t}_j^m \right|^2 < +\infty$$

if and only if

(3.12)
$$\int_0^{R_0} \left\{ \frac{1}{R^3} \int \int_{|w| \le R} n(f = w, r_0 \le |z| < 1) du dv \right\} dR < +\infty,$$

where $\{c_n\}$ are defined in (1.3), r_0 is defined in Lemma 3.2 and R_0 is a fixed positive number.

It should be noted that under the hypotheses of Theorem A, we have $n(f = w, r_0 \le |z| < 1) = 0$ for |w| < A. Thus, Theorem 3.1 certainly implies Theorem A.

Proof: From Lemma 3.3, we have

$$\begin{split} I(r) &= \sum_{m=1}^{\infty} m |c_m - \frac{1}{mk} \sum_{j=1}^{k} \bar{t}_j^m|^2 r^{2m} \\ &= \sum_{m=1}^{\infty} m |c_m|^2 r^{2m} + \frac{1}{k^2} \sum_{m=1}^{\infty} \frac{1}{m} |\sum_{j=1}^{k} \bar{t}_j^m|^2 r^{2m} - \frac{2}{k} \sum_{j=1}^{k} \operatorname{Re} \sum_{m=1}^{\infty} c_m (r^2 t_j)^m \\ &= \frac{1}{2p} \log \frac{M(r)}{m(r)} + \frac{1}{2p^2} \int_{m(r)}^{M(r)} \frac{H(R, r_0 \le |z| < r)}{R^3} dR \\ &+ \frac{1}{k} \log \frac{1}{1 - r^2} - \frac{1}{kp} \sum_{j=1}^{k} \log \left| \frac{f(r^2 t_j)}{h(r^2 t_j)} \right| + B_1(r) \\ &= \frac{1}{2p} \log \left\{ (1 - r^2)^{-2p/k} M(r) \prod_{j=1}^{k} |f(r^2 t_j)|^{-2/k} \right\} \\ &+ \frac{1}{2p^2} \int_{m(r)}^{R_0} \frac{1}{R^3} \left\{ \frac{1}{\pi} \int \int_{|w| \le R} n(f = w, r_0 \le |z| < r) du dv \right\} dR \\ &+ \frac{1}{2p^2} \int_{R_0}^{M(r)} \frac{H(R, r_0 \le |z| < r)}{R^3} dR + B_2(r), \end{split}$$

where $B_1(r), B_2(r)$ are bounded functions in $[r_0, 1)$. Let r_n be defined as in Theorem 2.2, and set

$$S_n = \frac{1}{2p} \log \{ (1 - r_n)^{-2p/k} M(\sqrt{r_n}) \prod_{j=1}^k |f(r_n t_j)|^{-2/k} \}$$

$$+ \frac{1}{2p^2} \int_{R_n}^{M(\sqrt{r_n})} \frac{H(R, r_0 \le |z| < \sqrt{r_n})}{R^3} dR + B_2(r_n).$$

Then Lemmas 3.1, 3.2 and Theorem 2.2 show that $\{S_n\}$ is a bounded sequence. By Levi's Theorem,

(3.13)
$$\lim_{r \to 1^{-}} \int_{m(r)}^{R_{0}} \left\{ \frac{1}{R^{3}} \int \int_{|w| \leq R} n(f = w, r_{0} \leq |z| < r) du dv \right\} dR$$
$$= \int_{0}^{R_{0}} \left\{ \frac{1}{R^{3}} \int \int_{|w| \leq R} n(f = w, r_{0} \leq |z| < 1) du dv \right\} dR.$$

If we note that I(r) is nondecreasing in $[r_0, 1)$, and that

$$I(\sqrt{r_n}) = S_n + \frac{1}{2\pi p^2} \int_{m(\sqrt{r_n})}^{R_0} \left\{ \frac{1}{R^3} \int \int_{|w| \le R} n(f = w, r_0 \le |z| \le \sqrt{r_n}) du dv \right\} dR$$

for all large n, then from (3.13) we can complete the proof of Theorem 3.1.

4. An example

We now construct a function g(z) in $\mu(p,k)$ that satisfies (3.12) but does not satisfy (1.4). Set

$$f_1(z) = \frac{1}{2} \frac{z}{(1-z)^2} + (\frac{1}{2} - \frac{i}{\pi}) \frac{z}{1-z} + \frac{i}{2\pi} \frac{1+z}{1-z} \log \frac{1+z}{1-z}, \quad |z| < 1.$$

Easy calculations show that $\operatorname{Re}\{(1-z)^2f_1'(z)\} > 0$, |z| < 1. Hence $f_1(z)$ is univalent in D. By considering $f_1(e^{i\theta})$, we see that $f_1(z)$ omits a disk $|w-w_0| < \epsilon$ for some $w_0 \in \mathbb{C}$ and $\epsilon > 0$. Put $f_2(z) = f_1(z) - w_0$, and let G_δ be a simply connected domain such that (i) $f_2(D) \subset G_\delta$, (ii) for all small $\rho > 0$, $G_\delta \cap \{|w| < \rho\} = \{w = u + vi: u^2 + v^2 < \rho^2, 0 < v < u^{1+\delta}, 0 < u < \rho\}$, where $\delta > 0$. By the Riemann mapping theorem, we see that there is a function of the form $f(z) = -w_0 + a_1z + \cdots$, $z \in D$, that maps D univalently onto G_δ . Since $f_2(z)$ is subordinate to f(z), the Hayman index β of f cannot be smaller than that of f_2 , so $\beta \geq \frac{1}{2}$. Thus $f \in \mu(1,1)$. Let W(R) denote the area of the portion of G_δ lying in |w| < R. From (ii), we find $W(R) < R^{2+\delta}$ for all small R. We see that f satisfies (3.12). Obviously, f does not satisfy (1.4).

In general, for the function $g(z) = f(z^k)^{p/k}$, we get from Lemma 2 in [6, p. 95] that g(z) is circumferentially mean p-valent in D. Since $f \in \mu(1,1)$, $g(z) \in \mu(p,k)$. Clearly, g(z) satisfies (3.12) but does not satisfy (1.4).

References

- [1] D. Aharonov, Bazilevic Theorem for areally p-valent functions, Journal of the London Mathematical Society (2) 27 (1983), 277–280.
- [2] I. E. Bazilevic, On a univalence criterion for regular functions and the dispersion of their coefficient, Matematicheskii Sbornik **74** (1967), 135-146.
- [3] X. H. Dong, The logarithmic area theorem for analytic functions, Chinese Science Bulletin (21) 37 (1992), 1774-1777.
- [4] B. G. Eke, Remarks on Ahlfors' distortion theorem, Journal d'Analyse Mathématique 19 (1967), 97-134.
- [5] B. G. Eke, The asymptotic behaviour of areally mean valent functions, Journal d'Analyse Mathématique 20 (1967), 147-212.
- [6] W. K. Hayman, Multivalent Functions, Cambridge, 1958.
- [7] Ch. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.